S. Anandha prabhavathy

Part time Research Scholar, Madurai Kamaraj University, Madurai,

INDIA, e-mail: prabhamaths6@gmail.com

Abstract

A Non-negative Weak Majority Roman Dominating Function (NNWM-RDF) on a graph G=(V,E) is a function $f: V \to \{-1, +1, 2\}$ satisfying the condition that the sum of its function values over at least half the closed neighborhood is at least zero. The weight of a NNWMRDF is the sum of its function values over all vertices. The *Non-negative Weak Majority Roman Domination Number* of a graph G, denoted by $\gamma_{wmr}^{NN}(G)$, is defined as $\gamma_{wmr}^{NN}(G) = \min\{w(f) \mid f \text{ is a NNWMRDF of } G\}$. In this paper, we initiate the study of Non-negative Weak Majority Roman Domination In Graphs.

Keywords: Non-negative Weak Majority Roman domination, Non-negative Weak Majority Roman Number.

Mathematics Subject Classification: 05C15, 05C69.

1 Introduction

By a graph G = (V, E), we mean a finite, non-trivial, connected, and undirected graph with neither loops nor multiple edges. The order and size of Gare denoted by n and m respectively. For graph theoretic terminology we refer to Chartand and Lesniak [1].

The study of domination is one of the fastest growing areas within graph theory. A subset D of vertices is said to be a *dominating set* of G if every vertex in V either belongs to D or is adjacent to a vertex in D. The *domination* number $\gamma(G)$ is the minimum cardinality of a dominating set of G. Survey of several advanced topics on domination is given in the book edited by Haynes et al. [2].

For a real valued function $f: V \to R$ on V, weight of f is defined to be $w(f) = \sum_{v \in V} f(v)$ and also for a subset $S \subseteq V$, we define $f(S) = \sum_{v \in S} f(v)$. Therefore w(f) = f(V). Further, for a vertex $v \in V$, let f[v] = f(N[v]) for notation convenience. A function $f: V \to \{-1, +1\}$ is called a majority dominating function if $f[v] \ge 1$ for at least half of the vertices in G. The majority domination number of G is denoted by $\gamma_{maj}(G)$ and is defined as $\gamma_{maj}(G) = \min\{w(f) \mid f \text{ is a majority dominating function of } G\}$. Majority domination was first introduced by Broere et al. in [3] and further studied in [4, 5].

A function $f: V \to \{-1, +1\}$ is called a Non-negative signed dominating function if $f(N(v)) \ge 0$ for all vertices in graph G. The Non-negative signed domination number of G, is defined as $\gamma_S^{Nt}(G) = \min\{w(f) \mid f \text{ is a NSDF of } G\}$. The concept of non-negative signed domination of a graph was introduced in [7].

A weak signed Roman dominating function (WSRDF) of a graph G with vertex set V(G) is defined as a function $f : V(G) \rightarrow \{-1, +1, 2\}$ having the property that $f(N[v]) \ge 1$ for all $v \in V(G)$, where N[v] is the closed neighborhood of v. The weight of a WSRDF is the sum of its function values over all vertices. The weak signed Roman domination number of G, denoted by $\gamma_{wsR}(G)$, is the minimum weight of a WSRDF in G. Weak signed Roman domination number was introduced by L.Volkmann in [6]

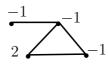
In this paper, we initiate the study of Non-negative Weak Majority Roman Domination in graphs.

2 Definition

Definition 2.0.1. A Non-negative Weak Majority Roman Dominating Function (NNWMRDF) on a graph G=(V,E) is a function $f: V \to \{-1, +1, 2\}$ satisfying the condition that the sum of its function values over at least half the closed neighborhood is at least zero. The weight of a NNWMRDF is the sum of its function values over all vertices. The *Non-negative Weak Majority Roman Domination Number* of a graph G, denoted by $\gamma_{WMR}^{NN}(G)$, is defined as $\gamma_{WMR}^{NN}(G) = \min\{w(f) \mid f \text{ is a NNWMRDF of } G\}.$

Remark 2.0.2. For every graph G, $\gamma_{WMR}^{NN}(G) \leq \gamma_{wsR}(G)$.

Example 2.0.3. Now consider the graph G as follows



By the way of assigning -1,+1 and 2 to the vertices of G, it is easy to observe that $\gamma_{WMR}^{NN}(G) = -1$.

Remark 2.0.4. Let us follow throughout the paper the following terminologies. If f is a weak majority roman dominating function of a graph G, then we define the sets $V_{f,1}$, $V_{f,-1}$, $V_{f,2}$ and N_f as follows.

- (i) $V_{f,1}(G) = \{ v \in V(G) : f(v) = 1 \}$
- (ii) $V_{f,-1}(G) = \{ v \in V(G) : f(v) = -1 \}$
- (iii) $V_{f,2}(G) = \{ v \in V(G) : f(v) = 2 \}$
- (iv) $N_f(G) = \{ v \in V(G) : f[v] \ge 0 \}$

Remark 2.0.5. If f is any weak majority Roman dominating function of a graph G of order n, then $f[v] \ge 0$ for at least half of the vertices of G. Further, it is obvious that $|V_{f,1}| + |V_{f,-1}| + |V_{f,2}| = n$ and $\gamma_{WMR}^{NN}(G) \le |V_{f,1}| - |V_{f,-1}| + 2 |V_{f,2}|$.

3 Common Classes Of Graphs

Theorem 3.0.6. For any path P_n on $n \ge 2$ vertices,

$$\gamma_{WMR}^{NN}(P_n) = \begin{cases} 3\left\lceil \frac{n}{6}\right\rceil - n - 1 & \text{if } \left\lceil \frac{n}{2}\right\rceil \equiv 1 \pmod{3}, \\ 3\left\lceil \frac{n}{6}\right\rceil - n & \text{otherwise.} \end{cases}$$

Proof. Let $P_n = (v_1, v_2, ..., v_n)$ and let f be a NNWMRDF of P_n with $\gamma_{wmr}^{NN}(P_n) = f(V)$. Since deg $v_i = 2$, for all $(2 \le i \le n - 1)$, for a vertex $v_i \in V_{f,2}$, three vertices belongs to N_f . Since $|N_f| \ge \left\lceil \frac{n}{2} \right\rceil$, we have three cases.

Case 1. $\left\lceil \frac{n}{2} \right\rceil \equiv 0 \pmod{3}$

Then $|V_{f,2}| \ge \left\lceil \frac{n}{6} \right\rceil$ and $|V_{f,-1}| \le n - \left\lceil \frac{n}{6} \right\rceil$. Hence $\gamma_{WMR}^{NN}(P_n) \ge 3 \left\lceil \frac{n}{6} \right\rceil - n$.

Case 2. $\left\lceil \frac{n}{2} \right\rceil \equiv 1 \pmod{3}$

5

That is, $\left\lceil \frac{n}{2} \right\rceil - 1 \equiv 0 \pmod{3}$. Then $|V_{f,2}| \geq \left\lceil \frac{n}{6} \right\rceil - 1$ and $|N_f| \geq \left\lceil \frac{n}{2} \right\rceil - 1$. Hence $|V_{f,1}| \ge 1$ and $|V_{f,-1}| \le n - \left\lceil \frac{n}{6} \right\rceil$. Therefore $\gamma_{WMR}^{NN}(P_n) \ge 3 \left\lceil \frac{n}{6} \right\rceil - n - 1$.

Case 3. $\left\lceil \frac{n}{2} \right\rceil \equiv 2 \pmod{3}$

That is, $\left\lceil \frac{n}{2} \right\rceil - 2 \equiv 0 \pmod{3}$. Then $|V_{f,2}| \geq \left\lceil \frac{n}{6} \right\rceil - 1$ and $|N_f| \geq \left\lceil \frac{n}{2} \right\rceil - 2$. If the two pendant vertices belongs to N_f , then $|V_{f,1}| \ge 2$. Otherwise $|V_{f,2}| \ge \left\lceil \frac{n}{6} \right\rceil$ and $|V_{f,-1}| \leq n - \left\lceil \frac{n}{6} \right\rceil$. Therefore $\gamma_{WMR}^{NN}(P_n) \geq 3 \left\lceil \frac{n}{6} \right\rceil - n$

On the other hand, define the function $g: V \to \{-1, +1, 2\}$ by (i) $n \equiv x \pmod{6}$, where $x \in \{0, 4, 5\}$

$$g(v_i) = \begin{cases} 2 & \text{if } i = 2 \text{ and } i \equiv 2 \pmod{3}, (1 \le i \le \lfloor \frac{n}{2} \rfloor) \\ -1 & \text{otherwise} \end{cases}$$

(ii) $n \equiv 3 \pmod{6}$ $g(v_i) = \begin{cases} 2 & \text{if } i = 2 \text{ and } i \equiv 2 \pmod{3}, (1 \le i \le -1) \\ -1 & \text{otherwise} \end{cases}$

$$v_i) = \begin{cases} 2 & \text{if } i = 2 \text{ and } i \equiv 2 \pmod{3}, (1 \le i \le \lfloor \frac{n}{2} \rfloor) \\ -1 & \text{otherwise} \end{cases}$$

(ii)
$$n \equiv x \pmod{6}$$
, where $x \in \{1, 2\}$

$$g(v_i) = \begin{cases} 2 & \text{if } i = 2 \text{ and } i \equiv 2 \pmod{3}, (1 \le i \le \lfloor \frac{n}{2} \rfloor) \\ +1 & \text{if } i = n \\ -1 & \text{otherwise} \end{cases}$$

Then we can verify that $g(N[v]) \ge 0$ for at least half of the vertices in G with weight $\gamma_{WMR}^{NN}(P_n) \leq \begin{cases} 3\left\lceil \frac{n}{6} \right\rceil - n - 1 & \text{if } \left\lceil \frac{n}{2} \right\rceil \equiv 1 \pmod{3}, \\ 3\left\lceil \frac{n}{6} \right\rceil - n & \text{otherwise.} \end{cases}$ Consequently, the result follows

Theorem 3.0.7. For any cycle C_n , on $(n \ge 3)$ vertices, $\gamma_{WMR}^{NN}(C_n) = 3\left\lceil \frac{n}{6} \right\rceil - n.$

Proof. Let $C_n = (v_1, v_2, ..., v_n, v_1)$ and let f be a NNWMRDF of C_n with $\gamma_{wmr}^{NN}(C_n) = f(V)$. Since deg $v_i = 2$, for all i, for a vertex $(v_i \in V_{f,2})$, three vertices belongs to N_f . Since $|N_f| \ge \left\lceil \frac{n}{2} \right\rceil$, we have $|V_{f,2}| \ge \left\lceil \frac{n}{6} \right\rceil$ and $|V_{f,-1}| \le n - \left\lceil \frac{n}{6} \right\rceil$. Hence $\gamma_{WMR}^{NN}(C_n) \ge 3 \left\lceil \frac{n}{6} \right\rceil - n$.

On the other hand, define the function $g:V \to \{-1,+1,2\}$ by

(i)
$$n \equiv x \pmod{6}$$
, where $x \in \{1, 2\}$

$$g(v_i) = \begin{cases} 2 & \text{if } i = 2 \text{ and } i \equiv 2 \pmod{3}, (2 \le i \le \left\lceil \frac{n}{2} \right\rceil + 1) \\ -1 & \text{otherwise} \end{cases}$$

(ii) $n \equiv x \pmod{6}$, where $x \in \{0, 3, 4, 5\}$

$$g(v_i) = \begin{cases} 2 & \text{if } i = 2 \text{ and } i \equiv 2 \pmod{3}, (2 \le i \le \left\lceil \frac{n}{2} \right\rceil) \\ -1 & \text{otherwise} \end{cases}$$

Then we can verify that $g(N[v]) \ge 0$ for at least half of the vertices in C_n with weight $\gamma_{WMR}^{NN}(C_n) \le 3 \left\lceil \frac{n}{6} \right\rceil - n$

Theorem 3.0.8. For any complete graph K_n , on $(n \ge 2)$ vertices, $\gamma_{WMR}^{NN}(K_n) = 0$

Proof. Let f be a NNWMRDF of K_n with $\gamma_{WMR}^{NN}(K_n) = f(V)$. Then there exists an vertex v of K_n such that $f(N[v]) \ge 0$. This implies that $\gamma_{WMR}^{NN}(K_n) = f(V) = f(N[v]) \ge 0$.

On the other hand, Choose vertices $v_1, v_2, ..., v_n$ of K_n and let $S = \left\{ v_1, v_2, ..., v_{\left\lceil \frac{n}{2} \right\rceil} \right\}$. Suppose first that n is even and $n \ge 4$. Now define $g: V \to \{-1, +1, 2\}$ by g(x) = -1, for each $x \in S$, and g(x) = 1 for each $x \notin S$. Now suppose n is odd. Define $g(v_n) = 2$, g(x) = -1, for each $x \in S$, and g(x) = +1, for each $x \notin S \cup \{v_n\}$. Hence $\gamma_{WMR}^{NN}(K_n) \le 0$. Consequently the result follows. \Box

Theorem 3.0.9. For any star $K_{1,n-1}$ on $n \ge 2$ vertices,

$$\gamma_{WMR}^{NN}(K_{1,n-1}) = 2 - n.$$

Proof. Let u be the central vertex and let $v_1, v_2, ..., v_{n-1}$ be the pendant vertices. Now let f be a NNWMRDF of $K_{1,n-1}$ such that $\gamma_{WMR}^{NN}(K_{1,n-1}) = f(V)$. Since $K_{1,n-1}$ is connected, $|V_{f,1}| \ge 1$. Hence $\gamma_{WMR}^{NN}(K_{1,n-1}) \ge 2 - n$. On the other hand by assigning +1 to the central vertex and -1 for pendant vertices we obtain a NNWMRDF of $K_{1,n-1}$ with weight 2 - n. Therefore $\gamma_{WMR}^{NN}(K_{1,n-1}) = 2 - n$.

Theorem 3.0.10. For any wheel W_n , on $(n \ge 4)$ vertices,

$$\gamma_{WMR}^{NN}(W_n) = 2\left\lceil \frac{n}{6} \right\rceil - n + 2.$$

Proof. Let u be the central vertex of W_n and let $v_1, v_2, ..., v_{n-1}$ be the vertices of C_{n-1} . Now let f be a NNWMRDF of W_n such that $\gamma_{WMR}^{NN}(W_n) = f(V)$. If $u \in N_f$, then $\gamma_{WMR}^{NN}(W_n) \ge 0$. Now suppose $u \notin N_f$. For each $v_i \in N_f$, we have

(i)
$$f(N[v_i]) - f(u) \ge -1$$
 if $f(u) = 2$

- (ii) $f(N[v_i]) f(u) \ge -1$ if f(u) = 1
- (iii) $f(N[v_i]) f(u) \ge 1$ if f(u) = -1

Since f is minimum, we take f(u) = +1. Now since every vertex $v_i \in N_f$ has degree three, for a vertex $v_i \in V_{f,1}$, three vertices belongs to N_f . Also since $|N_f| \ge \left\lceil \frac{n}{2} \right\rceil$ and f(u) = +1, we have $|V_{f,1}| \ge \left\lceil \frac{n}{6} \right\rceil + 1$. Therefore $|V_{f,-1}| \le n - \left\lceil \frac{n}{6} \right\rceil - 1$. Hence the lower bound follows.

Now for the upper bound define the function $g: V \to \{-1, +1, 2\}$ by g(u) = +1and

$$g(v_i) = \begin{cases} 1 & \text{for any } \left\lceil \frac{n}{6} \right\rceil \text{ vertices with } i \equiv 1 \pmod{3}, \\ -1 & \text{otherwise.} \end{cases}$$

It is easy to verify that g is a NNWMRDF with weight $2\left\lceil \frac{n}{6}\right\rceil - n + 2$. Consequently the result follows.

Theorem 3.0.11. Let G be a regular graph of order n. Then

 $\gamma_{WMR}^{NN}(G) \ge \left\lceil \frac{n}{2} \right\rceil - n.$

Proof. Let f be a NNWMRDF of G. Since for at least half of the vertices $v \in V$, $f(N[v]) \ge 0$, we have

$$\sum_{v \in V} f(N[v]) \ge 0(\left\lceil \frac{n}{2} \right\rceil) + (-r-1)(n - \left\lceil \frac{n}{2} \right\rceil)$$

Also the $\sum_{v \in V} f(N[v])$ counts the value f(v) exactly $\deg v + 1$ times for each vertex $v \in V$. That is, $\sum_{v \in V} f(N[v]) = \sum_{v \in V} f(v)(\deg v + 1)$. Hence, $\sum_{v \in V} f(v)(r+1) \ge (0)(\left\lceil \frac{n}{2} \right\rceil) + (-r-1)(n - \left\lceil \frac{n}{2} \right\rceil)$ $= \left\lceil \frac{n}{2} \right\rceil (r+1) + n(-1-r)$ $f(V) \ge \frac{\left\lceil \frac{n}{2} \right\rceil (r+1) - n(1+r)}{r+1}$

Theorem 3.0.12. Let $G = K_{2n} - M$; where M is a perfect matching in the complete graph K_{2n} . Then $\gamma_{WMR}^{NN}(G) = -1$.

Proof. Let $V(K_{2n}) = (v_1, v_2, ..., v_{2n})$ and $M = (v_1v_2, v_3v_4, v_5v_6, ..., v_{2n-1}v_{2n}).$ Now define a function $f: V \to \{-1, 1, 2\}$ by

$$f(v_i) = \begin{cases} +1 & \text{if } 1 \le i \le n-2\\ 2 & \text{if } i = n\\ -1 & \text{otherwise} \end{cases}$$

8

Then it is easy to verify that f is a NNWMRDF. Hence $\gamma_{WMR}^{NN}(G) \leq -1$. Now let g be any NNWMRDF of G with $\gamma_{WMR}^{NN}(G) = g(V)$. Let $v_i \in N_g$ and let v_j be the vertex which is not adjacent to v_i . Hence $g(V) = g(N[v_i]) + g(v_j) \geq$ 0 - 1 = -1.

Theorem 3.0.13. Let G denote the friendship graph with t-triangles. Then

$$\gamma_{WMR}^{NN}(G) = 2 - 2t$$

Proof. Let u be the central vertex of G and let $(v_1, v_2, ..., v_{2t})$ be the vertices in the triangles. Now define $f: V \to \{-1, 1, 2\}$ by f(u) = 2 and assign -1for remaining vertices. Then it is easy to verify that f is a NNWMRDF with $\gamma_{WMR}^{NN}(G) \leq 2 - 2t$

Now let g be any NNWMRDF with $\gamma_{WMR}^{NN}(G) = g(V) = g(N[v_i]) + g(V - N[v_i])$. Therefore $\gamma_{WMR}^{NN}(G) \ge 0 + (-1)[2(t-1)]$.

4 Open problems

We encountered numerous problems in the course of this investigation. We list here some of them.

- 1. Characterization of graphs G for which $\gamma_{wsR}(G) = \gamma_{WMR}^{NN}(G)$.
- 2. Find sharp lower bound of $\gamma_{WMR}^{NN}(G)$.
- 3. Find the non-negative weak majority roman domination number of trees.

REFERENCES

 G. Chartrand and Lesniak, Graphs and Digraphs, Fourth edition, CRC press, Boca Raton, 2005.

- [2] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York(1998).
- [3] Izak Broere, Johannes H.Hattingh, Michael A.Henning, Alice A.McRae, Majority domination in graphs, Discrete Mathematics 138(1995)125-135.
- [4] T.S. Holm, On majority domination in graph, Discrete Mathematics 239(2001),1-12.
- [5] Hua-ming xing, Langfang, Liang sun, Beijing, Xue-gang chen and Taian, On signed majority total domination in graphs, Czechoslovak Mathematical Journal, 55(130)(2005),341-348.
- [6] L.Volkmann, Weak signed Roman domination in graphs, Communications In Combinatorics and Optimization, 5(2)(2020),111-123.
- [7] Zhongsheng Huang, Wensheng Li, Zhifang Feng and Huaming Xing, On nonnegative signed domination in graphs, Journal of networks, Vol 8, No. 2(2013), pp, 365-372
- [8] H.Abdollahzadeh Ahangar, Michael A.Henning, Vladimir Samodivkin, Signed Roman domination in graphs, Journal of Combinatorial Optimization.,27(2014),241-255.